Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Acta Physiol (Oxf) ; 232(4): e13671, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33942517

RESUMO

Gestational diabetes mellitus (GDM) shows a deficiency in the metabolism of D-glucose and other nutrients, thereby negatively affecting the foetoplacental vascular endothelium. Maternal hyperglycaemia and hyperinsulinemia play an important role in the aetiology of GDM. A combination of these and other factors predisposes women to developing GDM with pre-pregnancy normal weight, viz. classic GDM. However, women with GDM and prepregnancy obesity (gestational diabesity, GDty) or overweight (GDMow) show a different metabolic status than women with classic GDM. GDty and GDMow are associated with altered l-arginine/nitric oxide and insulin/adenosine axis signalling in the human foetoplacental microvascular and macrovascular endothelium. These alterations differ from those observed in classic GDM. Here, we have reviewed the consequences of GDty and GDMow in the modulation of foetoplacental endothelial cell function, highlighting studies describing the modulation of intracellular pH homeostasis and the potential implications of NO generation and adenosine signalling in GDty-associated foetal vascular insulin resistance. Moreover, with an increase in the rate of obesity in women of childbearing age worldwide, the prevalence of GDty is expected to increase in the next decades. Therefore, we emphasize that women with GDty and GDMow should be characterized with a different metabolic state from that of women with classic GDM to develop a more specific therapeutic approach for protecting the mother and foetus.


Assuntos
Diabetes Gestacional , Resistência à Insulina , Endotélio Vascular , Feminino , Humanos , Insulina , Placenta , Gravidez
2.
Biochim Biophys Acta Mol Basis Dis ; 1866(12): 165948, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-32866635

RESUMO

Gestational diabetes mellitus (GDM) is a disease of pregnancy that is associated with d-glucose intolerance and foeto-placental vascular dysfunction. GMD causes mitochondrial dysfunction in the placental endothelium and trophoblast. Additionally, GDM is associated with reduced placental oxidative phosphorylation due to diminished activity of the mitochondrial F0F1-ATP synthase (complex V). This phenomenon may result from a higher generation of reactive superoxide anion and nitric oxide. Placental mitochondrial biogenesis and mitophagy work in concert to maintain cell homeostasis and are vital mechanisms securing the efficient generation of ATP, whose demand is higher in pregnancy, ensuring foetal growth and development. Additional factors disturbing placental ATP synthase activity in GDM include pre-gestational maternal obesity or overweight, intracellular pH, miRNAs, fatty acid oxidation, and foetal (and 'placental') sex. GDM is also associated with maternal and foetal hyperinsulinaemia, altered circulating levels of adiponectin and leptin, and the accumulation of extracellular adenosine. Here, we reviewed the potential interplay between these molecules or metabolic conditions on the mechanisms of mitochondrial dysfunction in the foeto-placental unit in GDM pregnancies.


Assuntos
Diabetes Gestacional/metabolismo , Mitocôndrias/metabolismo , Doenças Placentárias/metabolismo , Animais , Diabetes Gestacional/patologia , Feminino , Humanos , Doenças Placentárias/patologia , Gravidez
3.
Nutrients ; 12(2)2020 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-32079298

RESUMO

: Gestational diabetes mellitus (GDM) associates with fetal endothelial dysfunction (ED), which occurs independently of adequate glycemic control. Scarce information exists about the impact of different GDM therapeutic schemes on maternal dyslipidemia and obesity and their contribution to the development of fetal-ED. The aim of this study was to evaluate the effect of GDM-treatments on lipid levels in nonobese (N) and obese (O) pregnant women and the effect of maternal cholesterol levels in GDM-associated ED in the umbilical vein (UV). O-GDM women treated with diet showed decreased total cholesterol (TC) and low-density lipoproteins (LDL) levels with respect to N-GDM ones. Moreover, O-GDM women treated with diet in addition to insulin showed higher TC and LDL levels than N-GDM women. The maximum relaxation to calcitonin gene-related peptide of the UV rings was lower in the N-GDM group compared to the N one, and increased maternal levels of TC were associated with even lower dilation in the N-GDM group. We conclude that GDM-treatments modulate the TC and LDL levels depending on maternal weight. Additionally, increased TC levels worsen the GDM-associated ED of UV rings. This study suggests that it could be relevant to consider a specific GDM-treatment according to weight in order to prevent fetal-ED, as well as to consider the possible effects of maternal lipids during pregnancy.


Assuntos
Diabetes Gestacional/dietoterapia , Dislipidemias/dietoterapia , Troca Materno-Fetal/fisiologia , Obesidade/dietoterapia , Veias Umbilicais/fisiopatologia , Adulto , Peso ao Nascer/fisiologia , Glicemia/análise , Índice de Massa Corporal , Peso Corporal/fisiologia , Colesterol/sangue , Colesterol/metabolismo , Estudos Transversais , Diabetes Gestacional/sangue , Diabetes Gestacional/diagnóstico , Diabetes Gestacional/metabolismo , Dieta com Restrição de Carboidratos , Dislipidemias/sangue , Dislipidemias/etiologia , Dislipidemias/fisiopatologia , Endotélio Vascular/fisiopatologia , Feminino , Humanos , Recém-Nascido , Lipoproteínas LDL/sangue , Lipoproteínas LDL/metabolismo , Masculino , Pessoa de Meia-Idade , Obesidade/sangue , Obesidade/metabolismo , Obesidade/fisiopatologia , Circulação Placentária/fisiologia , Gravidez , Estudos Retrospectivos , Adulto Jovem
4.
Biochim Biophys Acta Mol Basis Dis ; 1866(2): 165370, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30660686

RESUMO

Gestational diabetes mellitus (GDM) is a disease of pregnancy associated with maternal and foetal hyperglycaemia and altered foetoplacental vascular function. Human foetoplacental microvascular and macrovascular endothelium from GDM pregnancy show increased maximal l-arginine transport capacity via the human cationic amino acid transporter 1 (hCAT-1) isoform and nitric oxide (NO) synthesis by the endothelial NO synthase (eNOS). These alterations are paralleled by lower maximal transport activity of the endogenous nucleoside adenosine via the human equilibrative nucleoside transporter 1 (hENT1) and activation of adenosine receptors. A causal relationship has been described for adenosine-activation of A2A adenosine receptors, hCAT-1, and eNOS activity (i.e. the Adenosine/l-Arginine/Nitric Oxide, ALANO, signalling pathway). Insulin restores these alterations in GDM via activation of insulin receptor A (IR-A) form in the macrovascular but IR-A and IR-B forms in the microcirculation of the human placenta. Adipokines are secreted from adipocytes influencing the foetoplacental metabolic and vascular function. Various adipokines are dysregulated in GDM, with adiponectin and leptin playing major roles. Abnormal plasma concentration of these adipokines and the activation or their receptors are involved in the pathophysiology of GDM. However, involvement of adipokines, adenosine, and insulin receptors and membrane transporters in the aetiology of this disease of pregnancy is unknown. This review focuses on the pathophysiology of insulin and adenosine receptors and l-arginine and adenosine membranes transporters giving an overview of the key adipokines leptin and adiponectin in the foetoplacental vasculature in GDM. This article is part of a Special Issue entitled: Membrane Transporters and Receptors in Pregnancy Metabolic Complications edited by Luis Sobrevia.


Assuntos
Adenosina/metabolismo , Diabetes Gestacional/metabolismo , Endotélio Vascular/metabolismo , Insulina/metabolismo , Receptores de Adipocina/metabolismo , Adipocinas/sangue , Antígenos CD/metabolismo , Arginina/metabolismo , Transporte Biológico/fisiologia , Transportador 1 de Aminoácidos Catiônicos/metabolismo , Endotélio/metabolismo , Transportador Equilibrativo 1 de Nucleosídeo/metabolismo , Feminino , Proteínas Ativadoras de GTPase , Humanos , Óxido Nítrico , Óxido Nítrico Sintase Tipo III/metabolismo , Placenta/metabolismo , Gravidez , Isoformas de Proteínas , Receptor de Insulina/metabolismo , Receptores Purinérgicos P1/metabolismo , Transdução de Sinais
5.
Mol Aspects Med ; 66: 40-48, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30849412

RESUMO

Obesity and type 2 diabetes mellitus (T2DM) are diseases associated with hypertension and metabolic alterations. A significant group of patients present both obesity and T2DM, a condition defined as diabesity. One of the metabolic features in these conditions is the clinical presentation of insulin resistance. Several tissues, including the liver, skeletal muscle, and vasculature, and patients with T2DM, gestational diabetes, and obesity show insulin resistance. The vascular effect of insulin, including vasodilation, is mainly mediated by the generation of nitric oxide. Several mechanisms are proposed to elucidate the origin of insulin resistance; nevertheless, a common finding is the endothelial dysfunction in these diseases. Endothelial cells from subjects with obesity show reduced nitric oxide synthesis, an effect that is unaltered by insulin. Individuals with T2DM show a misbalance between the synthesis, release, and biological actions of vasodilators and vasoconstrictors such as nitric oxide and endothelin-1. However, whether these mechanisms are involved in the vascular alterations seen in patients with diabesity is unclear. In this review, we discussed the modifications on insulin signalling, insulin resistance in obesity and T2DM, and the reported changes in signalling pathways in diabesity.


Assuntos
Diabetes Mellitus Tipo 2/metabolismo , Diabetes Gestacional/metabolismo , Insulina/metabolismo , Obesidade/metabolismo , Placenta/irrigação sanguínea , Endotélio Vascular/metabolismo , Feminino , Humanos , Resistência à Insulina , Óxido Nítrico/metabolismo , Placenta/metabolismo , Gravidez , Transdução de Sinais
6.
Mol Aspects Med ; 66: 49-61, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30472165

RESUMO

Diabesity is an abnormal metabolic condition shown by patients with obesity that develop type 2 diabetes mellitus. Patients with diabesity present with insulin resistance, reduced vascular response to insulin, and vascular endothelial dysfunction. Along with the several well-described mechanisms of insulin resistance, a state of endoplasmic reticulum (ER) stress, where the primary human targets are the adipose tissue, liver, skeletal muscle, and the foetoplacental vasculature, is apparent. ER stress characterises by the activation of the unfolded protein response via three canonical ER stress sensors, i.e., the protein kinase RNA-like endoplasmic reticulum kinase (PERK), inositol-requiring enzyme 1α (IRE1α), and activating transcription factor 6. Slightly different cell signalling mechanisms preferentially enable in diabesity in the ER stress-associated insulin resistance for adipose tissue (IRE1α/X-box binding protein 1 mRNA splicing/c-jun N-terminal kinase 1 activation), skeletal muscle (tribbles-like protein 3 (TRB3)/proinflammatory cytokines activation), and liver (PERK/activating transcription factor 4/TRB3 activation). There is no information in human subjects with diabesity in the foetoplacental vasculature. However, the available literature shows that pregnant women with pre-pregnancy obesity or overweight that develop gestational diabetes mellitus (GDM) and their newborn show insulin resistance. ER stress is recently reported to be triggered in endothelial cells from the human umbilical vein from mothers with pre-pregnancy obesity. However, whether a different metabolic alteration to obesity in pregnancy or GDM is present in women with pre-pregnancy obesity that develop GDM, is unknown. In this review, we summarised the findings on diabesity-associated mechanisms of insulin resistance with emphasis in the primary targets adipose, skeletal muscle, liver, and foetoplacental tissues. We also give evidence on the possibility of a new GDM-associated metabolic condition triggered in pregnancy by maternal obesity, i.e. gestational diabesity, leading to ER stress-associated insulin resistance in the human foetoplacental vasculature.


Assuntos
Diabetes Mellitus Tipo 2/metabolismo , Estresse do Retículo Endoplasmático , Resistência à Insulina , Obesidade/metabolismo , Tecido Adiposo/metabolismo , Feminino , Humanos , Fígado/metabolismo , Músculo Esquelético/metabolismo , Placenta/metabolismo , Gravidez , Transdução de Sinais , Resposta a Proteínas não Dobradas
7.
Artigo em Inglês | MEDLINE | ID: mdl-30065755

RESUMO

BACKGROUND: Loxoscelism is a severe human envenomation caused by Loxosceles spider venom. To the best of our knowledge, no study has evaluated the presence of antibodies against Loxosceles venom in loxoscelism patients without treatment with antivenom immunotherapy. We perform a comparative analysis for the presence of antibodies capable of recognizing Loxosceles venom in a group of patients diagnosed with loxoscelism and in a group of people without loxoscelism. METHODS: The detection of L. laeta venom, Sicarius venom and recombinant phospholipases D from Loxosceles (PLDs) in sera from people with loxoscelism (Group 1) and from healthy people with no history of loxoscelism (Group 2) was evaluated using immuno-dot blot, indirect ELISA, and Western blot. RESULTS: We found naturally heterophilic antibodies (IgG-type) in people without contact with Loxosceles spiders or any clinical history of loxoscelism. Either serum pools or single sera from Group 1 and Group 2 analyzed by dot blot tested positive for L. laeta venom. Indirect ELISA for venom recognition showed titles of 1:320 for Group 1 sera and 1:160 for Group 2 sera. Total IgG quantification showed no difference in sera from both groups. Pooled sera and purified IgG from sera of both groups revealed venom proteins between 25 and 32 kDa and the recombinant phospholipase D isoform 1 (rLlPLD1), specifically. Moreover, heterophile antibodies cross-react with PLDs from other Loxosceles species and the venom of Sicarius spider. CONCLUSIONS: People without contact with the spider venom produced heterophilic antibodies capable of generating a cross-reaction against the venom of L. laeta and Sicarius spiders. Their presence and possible interference should be considered in the development of immunoassays for Loxosceles venom detection.

8.
Biochim Biophys Acta Mol Basis Dis ; 1864(10): 3195-3210, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30006153

RESUMO

Obesity associates with the endoplasmic reticulum (ER) stress-induced endothelial dysfunction. Pregnant women with pre-pregnancy maternal obesity (PGMO) may transfer this potential risk to their offspring; however, whether ER stress occurs and associates with foetoplacental endothelial dysfunction in PGMO is unknown. We studied the l-arginine transport and nitric oxide (NO) synthesis in human umbilical vein endothelial cells (HUVECs) from women with PGMO or with a normal pre-pregnancy weight. We analysed the expression and activation of the ER stress sensors protein kinase RNA-like endoplasmic reticulum kinase (PERK), inositol-requiring enzyme 1α (IRE1α), and activating transcription factor 6 (ATF6). PGMO associated with lower endothelial NO synthase activity due to increased Thr495-inhibitor and decreased Ser1177-stimulator phosphorylation. However, higher expression and activity of the human cationic amino acid transporter 1 was found. PGMO caused activation of PERK and its downstream targets eukaryotic initiation factor 2 (eIF2α), C/EBP homologous protein 10 (CHOP), and tribbles-like protein 3 (TRB3). Increased IRE1α protein abundance (but not its phosphorylation or X-box binding protein 1-mRNA splicing) and increased c-Jun N-terminal kinase 1 phosphorylation was seen in PGMO. A preferential nuclear location of the activating transcription factor 6 (ATF6) was found in HUVECs from PGMO. All the changes seen in PGMO were blocked by TUDCA but unaltered by tunicamycin. Thus, PGMO may determine a state of ER stress via upregulation of the PERK-eIF2α-CHOP-TRB3 axis signalling in HUVECs. This phenomenon results in foetoplacental vascular endothelial dysfunction at birth.


Assuntos
Estresse do Retículo Endoplasmático , Retículo Endoplasmático/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Obesidade/metabolismo , Transdução de Sinais , Fator 6 Ativador da Transcrição/metabolismo , Adulto , Arginina/metabolismo , Proteínas de Ciclo Celular/metabolismo , Endorribonucleases/metabolismo , Feminino , Humanos , Óxido Nítrico/metabolismo , Gravidez , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Repressoras/metabolismo , Fator de Transcrição CHOP/metabolismo , Adulto Jovem , eIF-2 Quinase/metabolismo
9.
Biochim Biophys Acta Mol Basis Dis ; 1864(9 Pt B): 2949-2956, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29890222

RESUMO

Gestational diabetes mellitus (GDM) is a disease characterised by glucose intolerance and first diagnosed in pregnancy. This condition relates to an anomalous placental environment and aberrant placental vascular function. GDM-associated hyperglycaemia changes the placenta structure leading to abnormal development and functionality of this vital organ. Aiming to avoid the GDM-hyperglycaemia and its deleterious consequences in the mother, the foetus and newborn, women with GDM are firstly treated with a controlled diet therapy; however, some of the women fail to reach the recommended glycaemia values and therefore they are passed to the second line of treatment, i.e., insulin therapy. The several protocols available in the literature regarding insulin therapy are variable and not a clear consensus is yet reached. Insulin therapy restores maternal glycaemia, but this beneficial effect is not reflected in the foetus and newborn metabolism, suggesting that other factors than d-glucose may be involved in the pathophysiology of GDM. Worryingly, insulin therapy may cause alterations in the placenta and umbilical vessels as well as the foetus and newborn additional to those seen in pregnant women with GDM treated with diet. In this review, we summarised the variable information regarding indications and protocols for administration of the insulin therapy and the possible outcomes on the function and structure of the foetoplacental unit and the neonate parameters from women with GDM.


Assuntos
Glicemia/efeitos dos fármacos , Diabetes Gestacional/tratamento farmacológico , Macrossomia Fetal/prevenção & controle , Insulina/uso terapêutico , Placenta/efeitos dos fármacos , Diabetes Gestacional/sangue , Diabetes Gestacional/dietoterapia , Feminino , Macrossomia Fetal/epidemiologia , Macrossomia Fetal/etiologia , Teste de Tolerância a Glucose , Humanos , Incidência , Recém-Nascido , Gravidez
10.
J. venom. anim. toxins incl. trop. dis ; 24: 1-14, 2018. tab, graf
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1484751

RESUMO

Background Loxoscelism is a severe human envenomation caused by Loxosceles spider venom. To the best of our knowledge, no study has evaluated the presence of antibodies against Loxosceles venom in loxoscelism patients without treatment with antivenom immunotherapy. We perform a comparative analysis for the presence of antibodies capable of recognizing Loxosceles venom in a group of patients diagnosed with loxoscelism and in a group of people without loxoscelism. Methods The detection of L. laeta venom, Sicarius venom and recombinant phospholipases D from Loxosceles (PLDs) in sera from people with loxoscelism (Group 1) and from healthy people with no history of loxoscelism (Group 2) was evaluated using immuno-dot blot, indirect ELISA, and Western blot. Results We found naturally heterophilic antibodies (IgG-type) in people without contact with Loxosceles spiders or any clinical history of loxoscelism. Either serum pools or single sera from Group 1 and Group 2 analyzed by dot blot tested positive for L. laeta venom. Indirect ELISA for venom recognition showed titles of 1:320 for Group 1 sera and 1:160 for Group 2 sera. Total IgG quantification showed no difference in sera from both groups. Pooled sera and purified IgG from sera of both groups revealed venom proteins between 25 and 32 kDa and the recombinant phospholipase D isoform 1 (rLlPLD1), specifically. Moreover, heterophile antibodies cross-react with PLDs from other Loxosceles species and the venom of Sicarius spider. Conclusions People without contact with the spider venom produced heterophilic antibodies capable of generating a cross-reaction against the venom of L. laeta and Sicarius spiders. Their presence and possible interference should be considered in the development of immunoassays for Loxosceles venom detection.


Assuntos
Anticorpos Heterófilos/análise , Fosfolipase D/imunologia , Venenos de Aranha/imunologia , Picaduras de Aranhas/complicações
11.
Artigo em Inglês | LILACS | ID: biblio-954860

RESUMO

Loxoscelism is a severe human envenomation caused by Loxosceles spider venom. To the best of our knowledge, no study has evaluated the presence of antibodies against Loxosceles venom in loxoscelism patients without treatment with antivenom immunotherapy. We perform a comparative analysis for the presence of antibodies capable of recognizing Loxosceles venom in a group of patients diagnosed with loxoscelism and in a group of people without loxoscelism. Methods The detection of L. laeta venom, Sicarius venom and recombinant phospholipases D from Loxosceles (PLDs) in sera from people with loxoscelism (Group 1) and from healthy people with no history of loxoscelism (Group 2) was evaluated using immuno-dot blot, indirect ELISA, and Western blot. Results We found naturally heterophilic antibodies (IgG-type) in people without contact with Loxosceles spiders or any clinical history of loxoscelism. Either serum pools or single sera from Group 1 and Group 2 analyzed by dot blot tested positive for L. laeta venom. Indirect ELISA for venom recognition showed titles of 1:320 for Group 1 sera and 1:160 for Group 2 sera. Total IgG quantification showed no difference in sera from both groups. Pooled sera and purified IgG from sera of both groups revealed venom proteins between 25 and 32 kDa and the recombinant phospholipase D isoform 1 (rLlPLD1), specifically. Moreover, heterophile antibodies cross-react with PLDs from other Loxosceles species and the venom of Sicarius spider. Conclusions People without contact with the spider venom produced heterophilic antibodies capable of generating a cross-reaction against the venom of L. laeta and Sicarius spiders. Their presence and possible interference should be considered in the development of immunoassays for Loxosceles venom detection.(AU)


Assuntos
Humanos , Masculino , Feminino , Adolescente , Adulto , Pessoa de Meia-Idade , Fosfolipase D/isolamento & purificação , Venenos de Aranha/toxicidade , Anticorpos Heterófilos/sangue , Antivenenos/uso terapêutico , Ensaio de Imunoadsorção Enzimática/métodos , Immunoblotting/métodos
12.
J Diabetes Res ; 2017: 5947859, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29104874

RESUMO

Insulin resistance is characteristic of pregnancies where the mother shows metabolic alterations, such as preeclampsia (PE) and gestational diabetes mellitus (GDM), or abnormal maternal conditions such as pregestational maternal obesity (PGMO). Insulin signalling includes activation of insulin receptor substrates 1 and 2 (IRS1/2) as well as Src homology 2 domain-containing transforming protein 1, leading to activation of 44 and 42 kDa mitogen-activated protein kinases and protein kinase B/Akt (Akt) signalling cascades in the human foetoplacental vasculature. PE, GDM, and PGMO are abnormal conditions coursing with reduced insulin signalling, but the possibility of the involvement of similar cell signalling mechanisms is not addressed. This review aimed to determine whether reduced insulin signalling in PE, GDM, and PGMO shares a common mechanism in the human foetoplacental vasculature. Insulin resistance in these pathological conditions results from reduced Akt activation mainly due to inhibition of IRS1/2, likely due to the increased activity of the mammalian target of rapamycin (mTOR) resulting from lower activity of adenosine monophosphate kinase. Thus, a defective signalling via Akt/mTOR in response to insulin is a central and common mechanism of insulin resistance in these diseases of pregnancy. In this review, we summarise the cell signalling mechanisms behind the insulin resistance state in PE, GDM, and PGMO focused in the Akt/mTOR signalling pathway in the human foetoplacental endothelium.


Assuntos
Diabetes Gestacional/metabolismo , Resistência à Insulina/fisiologia , Pré-Eclâmpsia/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Feminino , Humanos , Gravidez , Transdução de Sinais/fisiologia
13.
Biochim Biophys Acta Mol Basis Dis ; 1863(11): 2987-2998, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28756217

RESUMO

Pregnant women diagnosed with gestational diabetes mellitus subjected to diet (GDMd) that do not reach normal glycaemia are passed to insulin therapy (GDMi). GDMd associates with increased human cationic amino acid transporter 1 (hCAT-1)-mediated transport of L-arginine and nitric oxide synthase (NOS) activity in foetoplacental vasculature, a phenomenon reversed by exogenous insulin. Whether insulin therapy results in reversal of the GDMd effect on the foetoplacental vasculature is unknown. We assayed whether insulin therapy normalizes GDMd-associated foetoplacental endothelial dysfunction. Primary cultures of human umbilical vein endothelial cells (HUVECs) from GDMi pregnancies were used to assay L-arginine transport kinetics, NOS activity, p44/42mapk and protein kinase B/Akt activation, and umbilical vein rings reactivity. HUVECs from GDMi or GDMd show increased hCAT-1 expression and maximal transport capacity, NOS activity, and eNOS, and p44/42mapk, but not Akt activator phosphorylation. Dilation in response to insulin or calcitonin-gene related peptide was impaired in umbilical vein rings from GDMi and GDMd pregnancies. Incubation of HUVECs in vitro with insulin (1 nmol/L) restored hCAT-1 and eNOS expression and activity, and eNOS and p44/42mapk activator phosphorylation. Thus, maternal insulin therapy does not seem to reverse GDMd-associated alterations in human foetoplacental vasculature.


Assuntos
Diabetes Gestacional , Endotélio Vascular/metabolismo , Insulina/administração & dosagem , Placenta/metabolismo , Adulto , Transportador 1 de Aminoácidos Catiônicos/metabolismo , Diabetes Gestacional/dietoterapia , Diabetes Gestacional/tratamento farmacológico , Diabetes Gestacional/metabolismo , Diabetes Gestacional/patologia , Endotélio Vascular/patologia , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Células Endoteliais da Veia Umbilical Humana/patologia , Humanos , Proteína Quinase 3 Ativada por Mitógeno/biossíntese , Óxido Nítrico Sintase Tipo III/biossíntese , Fosforilação/efeitos dos fármacos , Placenta/patologia , Gravidez , Proteínas Proto-Oncogênicas c-akt/metabolismo
14.
Mol Aspects Med ; 55: 45-61, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-27871900

RESUMO

Regulation of blood flow depends on systemic and local release of vasoactive molecules such as insulin and adenosine. These molecules cause vasodilation by activation of plasma membrane receptors at the vascular endothelium. Adenosine activates at least four subtypes of adenosine receptors (A1AR, A2AAR, A2BAR, A3AR), of which A2AAR and A2BAR activation leads to increased cAMP level, generation of nitric oxide, and relaxation of the underlying smooth muscle cell layer. Vasodilation caused by adenosine also depends on plasma membrane hyperpolarization due to either activation of intermediate-conductance Ca2+-activated K+ channels in vascular smooth muscle or activation of ATP-activated K+ channels in the endothelium. Adenosine also causes vasoconstriction via a mechanism involving A1AR activation resulting in lower cAMP level and increased thromboxane release. Insulin has also a dual effect causing NO-dependent vasodilation, but also sympathetic activity- and increased endothelin 1 release-dependent vasoconstriction. Interestingly, insulin effects require or are increased by activation or inactivation of adenosine receptors. This is phenomenon described for d-glucose and l-arginine transport where A2AAR and A2BAR play a major role. Other studies show that A1AR activation could reduce insulin release from pancreatic ß-cells. Whether adenosine modulation of insulin biological effect is a phenomenon that depends on co-localization of adenosine receptors and insulin receptors, and adenosine plasma membrane transporters is something still unclear. This review summarizes findings addressing potential involvement of adenosine receptors to modulate insulin effect via insulin receptors with emphasis in the human vasculature.


Assuntos
Adenosina/metabolismo , Endotélio Vascular/metabolismo , Insulina/metabolismo , Adenosina/genética , Endotélio Vascular/patologia , Glucose/metabolismo , Humanos , Insulina/genética , Músculo Liso Vascular/metabolismo , Óxido Nítrico/metabolismo , Receptor A2A de Adenosina/genética , Receptor A2A de Adenosina/metabolismo , Receptor A2B de Adenosina/genética , Receptor A2B de Adenosina/metabolismo , Receptor A3 de Adenosina/genética , Receptor A3 de Adenosina/metabolismo , Transdução de Sinais , Vasoconstrição/genética
15.
J Cell Mol Med ; 20(12): 2223-2230, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27469435

RESUMO

Nitric oxide plays several roles in cellular physiology, including control of the vascular tone and defence against pathogen infection. Neuronal, inducible and endothelial nitric oxide synthase (NOS) isoforms synthesize nitric oxide. Cells generate acid and base equivalents, whose physiological intracellular concentrations are kept due to membrane transport systems, including Na+ /H+ exchangers and Na+ /HCO3- transporters, thus maintaining a physiological pH at the intracellular (~7.0) and extracellular (~7.4) medium. In several pathologies, including cancer, cells are exposed to an extracellular acidic microenvironment, and the role for these membrane transport mechanisms in this phenomenon is likely. As altered NOS expression and activity is seen in cancer cells and because this gas promotes a glycolytic phenotype leading to extracellular acidosis in gynaecological cancer cells, a pro-inflammatory microenvironment increasing inducible NOS expression in this cell type is feasible. However, whether abnormal control of intracellular and extracellular pH by cancer cells regards with their ability to synthesize or respond to nitric oxide is unknown. We, here, discuss a potential link between pH alterations, pH controlling membrane transport systems and NOS function. We propose a potential association between inducible NOS induction and Na+ /H+ exchanger expression and activity in human ovary cancer. A potentiation between nitric oxide generation and the maintenance of a low extracellular pH (i.e. acidic) is proposed to establish a sequence of events in ovarian cancer cells, thus preserving a pro-proliferative acidic tumour extracellular microenvironment. We suggest that pharmacological therapeutic targeting of Na+ /H+ exchangers and inducible NOS may have benefits in human epithelial ovarian cancer.


Assuntos
Neoplasias dos Genitais Femininos/metabolismo , Óxido Nítrico/metabolismo , Animais , Membrana Celular/metabolismo , Feminino , Humanos , Concentração de Íons de Hidrogênio , Modelos Biológicos
16.
Front Physiol ; 7: 119, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27065887

RESUMO

Gestational diabetes mellitus (GDM) is a disease of the mother that associates with altered fetoplacental vascular function. GDM-associated maternal hyperglycaemia result in fetal hyperglycaemia, a condition that leads to fetal hyperinsulinemia and altered L-arginine transport and synthesis of nitric oxide, i.e., endothelial dysfunction. These alterations in the fetoplacental endothelial function are present in women with GDM that were under diet or insulin therapy. Since these women and their newborn show normal glycaemia at term, other factors or conditions could be altered and/or not resolved by restoring normal level of circulating D-glucose. GDM associates with metabolic disturbances, such as abnormal handling of the locally released vasodilator adenosine, and biosynthesis and metabolism of cholesterol lipoproteins, or metabolic diseases resulting in endoplasmic reticulum stress and altered angiogenesis. Insulin acts as a potent modulator of all these phenomena under normal conditions as reported in primary cultures of cells obtained from the human placenta; however, GDM and the role of insulin regarding these alterations in this disease are poorly understood. This review focuses on the potential link between insulin and endoplasmic reticulum stress, hypercholesterolemia, and angiogenesis in GDM in the human fetoplacental vasculature. Based in reports in primary culture placental endothelium we propose that insulin is a factor restoring endothelial function in GDM by reversing ERS, hypercholesterolaemia and angiogenesis to a physiological state involving insulin activation of insulin receptor isoforms and adenosine receptors and metabolism in the human placenta from GDM pregnancies.

18.
Front Cell Dev Biol ; 3: 25, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26000275

RESUMO

The acquisition of myoblast commitment to the myogenic linage requires rises in intracellular free Ca(2+) concentration ([Ca(2+)]i). Putative cell membrane pathways involved in these [Ca(2+)]i increments are P2 receptors (P2Rs) as well as connexin (Cx) and/or pannexin (Panx) hemichannels and channels (Cx HChs and Panx Chs), respectively, which are known to permeate Ca(2+). Reserve cells (RCs) are uncommitted myoblasts obtained from differentiated C2C12 cell cultures, which acquire commitment upon replating. Regarding these cells, we found that extracellular ATP increases the [Ca(2+)]i via P2Rs. Moreover, ATP increases the plasma membrane permeability to small molecules and a non-selective membrane current, both of which were inhibited by Cx HCh/Panx1Ch blockers. However, RCs exposed to divalent cation-free saline solution, which is known to activate Cx HChs (but not Panx Chs), did not enhance membrane permeability, thus ruling out the possible involvement of Cx HChs. Moreover, ATP-induced membrane permeability was inhibited with blockers of P2Rs that activate Panx Chs. In addition, exogenous ATP induced the expression of myogenic commitment and increased MyoD levels, which was prevented by the inhibition of P2Rs or knockdown of Panx1 Chs. Similarly, increases in MyoD levels induced by ATP released by RCs were inhibited by Panx Ch/Cx HCh blockers. Myogenic commitment acquisition thus requires a feed-forward mechanism mediated by extracellular ATP, P2Rs, and Panx Chs.

19.
Biomed Res Int ; 2013: 589130, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24236292

RESUMO

In vertebrates, connexins (Cxs) and pannexins (Panxs) are proteins that form gap junction channels and/or hemichannels located at cell-cell interfaces and cell surface, respectively. Similar channel types are formed by innexins in invertebrate cells. These channels serve as pathways for cellular communication that coordinate diverse physiologic processes. However, it is known that many acquired and inherited diseases deregulate Cx and/or Panx channels, condition that frequently worsens the pathological state of vertebrates. Recent evidences suggest that Cx and/or Panx hemichannels play a relevant role in bacterial and viral infections. Nonetheless, little is known about the role of Cx- and Panx-based channels in parasitic infections of vertebrates. In this review, available data on changes in Cx and gap junction channel changes induced by parasitic infections are summarized. Additionally, we describe recent findings that suggest possible roles of hemichannels in parasitic infections. Finally, the possibility of new therapeutic designs based on hemichannel blokers is presented.


Assuntos
Conexinas/metabolismo , Junções Comunicantes/metabolismo , Junções Comunicantes/parasitologia , Doenças Parasitárias/metabolismo , Animais , Infecções Bacterianas/metabolismo , Infecções Bacterianas/patologia , Junções Comunicantes/microbiologia , Junções Comunicantes/patologia , Junções Comunicantes/virologia , Humanos , Doenças Parasitárias/patologia , Viroses/metabolismo , Viroses/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...